The View of Propositions as Types of Actions

Peter Hanks
University of Minnesota
pwhanks@umn.edu

Introduction

Papers on propositions tend to start with lists of the various roles played by propositions: bearers of truth and falsity, objects of belief, contents of sentences, bearers of modal properties. These lists mask deeper differences between different conceptions of propositions. On the one hand, you can think of propositions as the primary bearers of representation and truth-conditions, from which assertions and beliefs derive their representational features. This was how Frege conceived of propositions (Frege 1918a).\(^1\) Frege thought of propositions as a source of truth-conditions — a repository of representational entities that we latch onto and make use of in thought and speech. This Fregean view endows propositions with a substantial explanatory role in the overall philosophical account of linguistic and mental representation.

On the other hand, you can think of propositions as what we represent with our assertions and beliefs. This was how Russell conceived of propositions circa 1903.\(^2\) For Russell around this time propositions were the chunks of the world (facts) that assertions and beliefs are directed at. If you have Russell’s conception then you won’t say that propositions are representational, and you won’t think that they are about anything. Rather, propositions are what our assertions and beliefs are about.

Both of these views face problems. The Fregean view faces the problem of explaining how propositions have their representational features and truth-conditions. This is the misleadingly labeled problem of the unity of the proposition. It’s a unity problem if you think of propositions as structured entities with constituents, for then the problem is explaining how the constituents get together with one another to give you

1 See (Merricks 2015) for a recent version of this view, and (Hanks 2017a) for discussion of Merricks’s account.

2 In 1904 Russell wrote that “in the above case, ‘A is the father of B’, we have already seen that the paternity is not the object, and it is obvious that neither A nor B is so: the conclusion remains that, if there is an object, it can only be the whole proposition.” (Russell 1904, 49). In other words, the “object” of the sentence ‘A is the father of B’ is not A, not B, and not the fatherhood relation, but rather the proposition that A is the father of B. By “object” Russell means what a sentence or belief is about — the part of the world it represents. It’s clear from statements like these that Russell has a very different conception of propositions than Frege. The difference is not just about whether propositions contain objects, but about the relationship between propositions and sentences and beliefs. This is something I got wrong in (Hanks 2015), where I categorized Russell’s view as an instance of the Fregean conception.
something with truth-conditions. Of course, if you don’t think of propositions as structured then it doesn’t make sense to talk about unifying their constituents, but that still leaves the problem of explaining how an unstructured proposition is capable of being true or false. You can choose not to solve the problem and take it to be primitive that propositions are representational, but then you are stuck with an unsatisfying story about how we represent the world through our speech acts and attitudes, since these acts and attitudes are supposed to get their representational features from propositions.

The problem for the Russelian view is that it inserts propositional intermediaries between us and the objects in the world that our assertions and beliefs are about. On the Russelian approach, my belief that Frege was a logician is not directly or immediately about Frege. Rather, it is about the proposition that Frege was a logician. My belief represents this proposition in the sense that it represents this proposition as being true. For Russell, all beliefs are like this. All beliefs are to the effect that a certain proposition is true. This means that my belief that Frege is a logician is about Frege only indirectly, by way of being about a proposition that has Frege as a constituent. The point is easy to miss, since Frege is right there inside the Russelian proposition that Frege was a logician. Still, the fact that the object is a constituent of the Russelian proposition doesn’t change the fact that my representational connection to the object has to go through a proposition. The fact that my belief is about Frege derives from the fact that it is about the proposition that Frege was a logician. Assertions and beliefs are thus directly about propositions and only indirectly about objects. This indirectness is a problem. It tends to motivate getting rid of the intermediaries and reestablishing a direct connection to objects, as Russell himself did when he adopted his multiple relation theory of judgment.

We’ve seen, then, that the Fregean and Russelian views face problems. There is, however, a third option. Instead of thinking of propositions as a source of representation, with Frege, or as a target of representation, with Russell, you can think of propositions as classificatory devices, whose role is to classify and individuate our representational utterances, thoughts, and states. This is the broader conception of propositional content

3 There’s another well-known problem for Russell’s 1903 account having to do with false beliefs. If I falsely believe that Frege was a ventriloquist then there’s no fact available to serve as the propositional object of my belief. Russell notoriously avoided this problem by including non-existent false propositions in his ontology, e.g. the non-existent fact/proposition that Frege was a ventriloquist. The problem I’m going to raise in the text is not this problem, and it applies regardless of whether or not we admit non-existent false propositions. The theories of propositions put forward in (Richard 2013) and (Speaks 2014) can be read as versions of the Russelian view that avoid this problem about false beliefs. Richard and Speaks both hold that propositions are non-representational (even though true or false), and that sentences and beliefs represent propositions. They avoid the problem of false belief by identifying propositions with certain properties that exist even when uninstantiated. Despite these advantages, Richard and Speaks still face the problem of indirectness that I raise above.

4 See (Hanks 2007) for the historical details about Russell.
underlying the view of propositions as types of actions. If you accept the classificatory conception then you will need to be able to tell a story about how we represent the world in our speech and thought that does not appeal to propositions. A natural idea is that agents represent the world by performing actions of various kinds, or by having various mental states. It’s through these actions and states that people represent objects as being various ways. Propositions are tools for identifying, describing, and classifying these representational actions and states. Identifying propositions with types of these actions makes good sense of how they can play this classificatory role. Types are classificatory by nature. To give the propositional content of a token utterance or thought is to classify it under a type of action. This distinguishes that token utterance or thought from others the agent might have made, and it provides information about the representational features of the token.

In what follows I will fill out this picture by describing the kinds of representational actions that are classified by propositions, providing more details about the types we use for these classifications, and showing how this approach can be used to solve Frege’s puzzle.

Predication and other representational actions

To predicate a property of an object is to apply or attribute that property to the object. This kind of action is non-neutral and committal. When you attribute a property to an object you characterize the object as being a certain way, and you can’t do that without taking a stand about whether the object is that way. Suppose the object does not have the property. Then you made a mistake in your act of predication. You got it wrong. But how could you get it wrong if you remained neutral about whether the object has the property? That doesn’t make any sense. Here’s an analogy I have used elsewhere to explain predication (Hanks 2015, 2016). Imagine sorting a pile of marbles according to their colors. For example, suppose you’re sorting out the green marbles from the rest. Predicating a property of an object is like picking up one of the marbles and putting into the pile with the other green marbles. Doing so clearly involves making a commitment about whether the marble belongs in the pile of green marbles. To remain neutral about whether the marble is green would require not putting it into the green pile, which is not to perform an act of predication at all.

People perform acts of predication whenever they make assertions or judgments. Predication isn’t a neutral precursor or ingredient inside these acts of assertion or judgment. To assert or judge that \(a \) is \(F \) is just to predicate the property of being \(F \) of \(a \). This is not to say that there can’t be instances of predication that do not commit the agent and that are not full-fledged assertions or judgments. If the circumstances are right it is possible to perform an act of predication without taking on a commitment to anything. Think about the actor on stage who says that \(a \) is \(F \) as part of the play, or someone who says \(a \) is \(F \) as the antecedent or consequent of a conditional, or as a disjunct in a disjunction, or as part of a story or poem, or as a hypothesis or conjecture. These are all examples of what I call cancellation contexts (Hanks 2015, 2016). These are contexts in

5 This is distinguishes my view from (Soames 2015).
6 See (Recanati 2016) for a different account of cancellation.
which someone performs an act of predication but, because of the nature of the context in which the act takes place, it does not count as an assertion and allows the agent to remain neutral. Cancellation contexts are a pervasive feature of our language game. There are all sorts of situations in which you can perform an act of predication without that act taking on status of an assertion. The act of predication itself is inherently assertoric or judgmental in nature, but there can be instances of this act in the right sorts of contexts that are not assertions and are not committal.

Predication is one kind of representational action, but there are others. Suppose I ask you whether a is F. In doing so I haven’t predicated F of a — I haven’t characterized a as being a certain way. Instead, I asked whether a is F. This is a different kind of representational action, and it is has different satisfaction conditions from acts of predication. Acts of predication are true or false; they have truth-conditions. Acts of asking are satisfied when they are answered; they have answerhood conditions. Alternatively, suppose I say to a: be F! That is, suppose I give a an order to be F. This is another kind of representational action, alongside predicking and asking. Let’s call it ordering. Acts of ordering are fulfilled or unfulfilled; they have fulfillment conditions.

There is a good reason for thinking that these are the three and only three kinds of representational actions. The reason involves the concept of direction of fit. Direction of fit is an abstract way of characterizing satisfaction conditions. The satisfaction conditions of acts of predication are truth-conditions. This kind of satisfaction condition has word-to-world direction of fit (or mind-to-world in the case of judgments). An act of predication is satisfied (i.e., true) just in case the world matches the words used in the act of predication. Acts of asking have word-to-word direction of fit. A question is satisfied by an answer, and an answer consists of more words. Acts of ordering have world-to-word direction of fit. For an act of ordering to be satisfied the person who receives the order has to perform the relevant action. In that sense, the world has to change, hence world-to-word direction of fit. These three kinds of direction of fit, word-to-world, word-to-word, and world-to-word, are the three and only three possible kinds of direction of fit. World-to-world is not a fourth option. In order to have satisfaction conditions there has to be a representation involved, and that means that there has to be words (or mind) somewhere in the direction of fit. That rules out world-to-world. We’re left with three and only three possible combinations: word-to-world, word-to-word, and world-to-word.

This three-way distinction lines up with a number of other distinctions. English has three major sentence moods: declarative (“Frege was a logician”), interrogative (“Was Frege a logician?”), and imperative (“Frege, be a logician!”). It turns out that this is a linguistic universal (Konig & Siemund 2007). Every language on earth has at least these three sentence moods. Similarly, English has three major forms of embedded clauses: that-clauses (“S asserted that Frege was a logician”), interrogative clauses (“S asked whether Frege was a logician”), and infinitive clauses (“S told Frege to be a logician”). These three way distinctions between sentence moods and embedded clauses line up exactly with the three-way distinction between predicating, asking, and ordering. The following table sums it up:
This last category, ordering, is actually broader than the name suggests. Acts of ordering can include acts of promising or requesting, both of which have fulfillment conditions and world-to-word direction of fit. In the mental case, the category of ordering covers desires and intentions, which, again, have fulfillment conditions and world-to-mind direction of fit. The label ‘ordering’ is a misnomer for this somewhat diverse category of acts and states. What unifies the category is that all the acts and states in this group have the same direction of fit (world-to-word/mind), they all have fulfillment conditions, and they are typically reported in English using infinitive clauses.

The view of propositions as types of actions is based on the idea that people are the source of representation, not abstract propositions. We generate representations through our spoken and mental actions and states. These actions and states come in three basic varieties: predicative, interrogative, and imperative. These are the three ways in which we represent the world. Propositions are devices for classifying and individuating these actions and states, and they also come in these three varieties. There are three kinds of propositions with three kinds of satisfaction conditions. This is a departure from the traditional conception on which propositions constitute a single category of truth-bearing contents. That traditional conception fits most naturally with either of the Fregean or Russellian conceptions that we canvassed earlier. If we move beyond these conceptions and think of propositions as classificatory devices then a three-way distinction between propositions ought to seem quite natural.

Propositions as types of actions

It’s going to be useful to have some notation to represent the types that serve as propositions. Let’s use the single turnstile, \vdash, for predication, the question mark, $\?$, for asking, and the exclamation mark, $!$, for ordering. Ignoring tense, here are the propositions expressed by ‘Frege was a logician’, ‘Was Frege a logician?’, and ‘Frege, be a logician!’ respectively:

1. $\vdash <\text{Frege}, \text{LOGICIAN}>$
2. $? <\text{Frege}, \text{LOGICIAN}>$
3. $! <\text{Frege}, \text{LOGICIAN}>$

These are types of actions. ‘Frege’ stands for a type of act of referring to Frege, and ‘LOGICIAN’ stands for a type of act of expressing the property of being a logician. These are sub-types of the more complex types represented by (1)-(3). Read the notation here as descriptions of these complex types. In a token of (1), for example, an agent refers to
Frege (Frege), expresses the property of being a logician (LOGICIAN), and predicates this property of Frege (\(\vdash \)). In a token of (2) an agent also refers to Frege and expresses the property of being a logician, but in this case asks whether Frege has this property. And in tokens of (3) the agent orders Frege to have this property. These are complex, structured types of actions whose constituents are themselves types of actions. Just as a token act of predicating being a logician of Frege involves constituent acts of referring, expressing, and predicating, the type (1) does as well. The sub-types in (1) are constituents of (1) in the same way that the sub-acts in a token of (1) are constituents of the larger act. The complexity of propositions on this approach is the complexity of actions.

Of the three propositions listed above, only (1) has truth-conditions. (2) has answerhood conditions, and (3) has fulfillment conditions. As I noted earlier, this is a departure from the traditional view that all propositions have truth-conditions. The traditional view, in either its Fregean or Russellian forms, has it that there is a single kind of propositional content shared by all speech acts and mental states. Elsewhere I have called this the taxonomic version of the distinction between content and force (Hanks 2015). This in contrast to the constitutive version of the content/force distinction, which is the idea that propositions are devoid of any aspects of force. An aspect of force would be something assertoric or judgmental, or something interrogative or imperative, which is built into the nature of a proposition. The constitutive version of the content/force distinction denies that there are any such things. Another way to put it is that according to the constitutive version of the distinction, in giving an account of the nature of propositions we won’t need to use concepts of force, e.g. concepts like assertion, question, or command. Like the taxonomic version, the present approach to propositions abandons the constitutive version of the content/force distinction. Propositions have force elements built into them, in the form of the types \(\vdash \), ? and !.

This exposes my account to Frege’s arguments for the constitutive version of the content/force distinction (Frege 1918a, 1918b). Perhaps the easiest version of the argument involves disjunction. Someone who says ‘Russell is right or Frege is wrong’ neither asserts that Russell is right nor that Frege is wrong. Yet the sentences ‘Russell is right’ and ‘Frege is wrong’ have exactly the same propositional contents when used inside the disjunction as they would outside of it. Assertion, then, can’t be built into the nature of these contents, for otherwise how could it be possible for someone to express these propositions in the disjunction without asserting them? The same argument can be run using the conditional, or even just with negation. Someone who says ‘It’s not the case that Frege was wrong’ doesn’t assert that Frege was wrong, even though ‘Frege is wrong’ means what it always means when it occurs in the negation. The lesson is supposed to be that assertion is no part of the propositional content of a declarative sentence.

My response to this argument involves the concept of cancellation that I introduced earlier. The use of disjunction creates a cancellation context for the acts of predication that take place within its scope. Because of the cancellation context, these

This is another way in which my view differs from Soames’s. Soames accepts the constitutive content/force distinction, I do not. This difference is closely related to our different conceptions of predication.
acts of predication do not count as assertions. Assertion, in the form of predication, is contained in the disjuncts all along, it’s just that these assertive aspects are cancelled by the use of ‘or’. Here is the proposition expressed by ‘Russell was right or Frege was wrong’ (again, ignoring tense):

4. $\vdash \langle \neg \vdash \langle \text{Russell}, \text{right}\rangle, \neg \vdash \langle \text{Frege}, \text{wrong}\rangle \rangle$, DISJ

Note the tildes (\neg) on the two internal predication operators. The tildes stand for cancellation (they are not negation signs). They indicate that in a token of (4) the two acts of predication in the disjuncts take place in cancellation contexts, i.e. contexts in which these acts of predication don’t count as assertions. That captures the fact that in a token of (4) the speaker neither asserts that Russell was right or that Frege was wrong. Remember to read the notation in (4) as a description of a type of action. The tildes are telling us that in tokens of this type the attendant acts of predication take place in cancellation contexts. Note also that the outermost turnstile in (4) is uncanceled. This turnstile represents the act of predication by which the speaker predicates a disjunctive relation, DISJ, of the two propositional disjuncts. You are still asserting something when you assert a disjunction – namely, that one or the other of the two disjuncts is true.

It’s useful to compare disjunction with conjunction. Suppose someone says ‘Russell was right and Frege was wrong’. This is a token of (5):

5. $\vdash \langle \vdash \langle \text{Russell}, \text{right}\rangle, \vdash \langle \text{Frege}, \text{wrong}\rangle \rangle$, CONJ

There are no tildes in this case, and hence no cancellation. Someone who says ‘Russell was right and Frege was wrong’ asserts both conjuncts. Unlike disjunction, the use of conjunction does not create cancellation contexts for its embedded clauses. This is a semantic difference between ‘and’ and ‘or’. The use of ‘or’ creates a cancellation context, the use of ‘and’ does not. In fact, all sentence-embedding expressions come in one of these two varieties, cancelling or non-cancelling. Examples of the former include ‘or’, ‘if’, ‘not’, and ‘possible’, examples of the latter include ‘and’, ‘true’, and ‘necessary’.

Attitude verbs, like ‘asserts’, ‘believes’, and ‘knows’, fall on the cancelling side. Someone who says ‘Russell asserted that Frege was a logician’ does not herself assert that Frege was a logician. In this case, the type of act performed can be represented by (6):

6. $\vdash \langle \neg \vdash \langle \text{Russell} \rangle, \neg \vdash \langle \text{Frege}, \text{logician}\rangle \rangle$, ASSERT

This is a type of act in which someone predicates the assertion relation of Russell and the proposition that Frege was a logician. In performing a token of this type the speaker predicates being a logician of Frege in a cancellation context generated by the use of the verb ‘assert’. That’s what the tilde on the internal predication operator indicates. Belief

8 I’m leaving out some of the details, in particular the phenomenon of target-shifting. See (Hanks 2015, ch.4) for the full story.

9 Once again, I’m simplifying. In fact what happens in a token of (6) is that the speaker predicates the assertion relation of Russell and some propositional type suitably related to the type $\vdash \langle \text{Frege}, \text{logician}\rangle$, where these suitably related types can vary from one context to another. This variability explains the complicated facts about substitutions in the complement clauses of attitude reports. See (Hanks 2011, 2015) for a semantic account of attitude reports based on the identification of propositions with types.
reports work in essentially the same way. Like ‘assert’, uses of the verb ‘believes’ create cancellation contexts for acts of predication that take place within their scope.

It’s tempting to hold that the verb ‘knows’ is different in this respect, i.e. that ‘knows’ does not cancel. If so, then someone who says ‘Russell knows that Frege was a logician’ would assert that Frege was a logician. That would explain the factivity of ‘knows’, and allow us to see the factive/non-factive distinction as an instance of the broader non-cancelling/cancelling distinction. Unfortunately, there are reasons for thinking that ‘knows’ should be classified alongside ‘asserts’ and ‘believes’ as a cancelling expression. The reason is that ‘knows’ can embed interrogative clauses, e.g. ‘Russell knows whether Frege was a logician’. Someone who says this clearly doesn’t herself ask whether Frege was a logician. The proposition in this case looks like this:

7. \(\vdash \langle \text{Russell}, \sim? \langle \text{Frege}, \text{LOGICIAN} \rangle, \text{KNOW} \rangle \)

Note the tilde on the internal question mark. This tilde indicates that in a token of (7) the speaker does not herself ask whether Frege was a logician. In this case, the cancellation context is generated by the use of ‘knows’.

There’s much more to be said to show how this approach to propositions can be scaled up to cover more complicated sorts of propositions, but that takes us beyond the scope of this essay (see Hanks 2015). Instead, let’s return to the problem for the Fregean approach to propositions, i.e. the problem of the unity of the proposition. This is the problem of explaining how propositions are representational and capable of being true or false. The problem is pressing for the Fregean view, since that view uses the representational features of propositions to explain the representational features of our speech acts and mental states. The problem is less pressing for the classificatory approach currently on offer. The fact that propositions are representational and have satisfaction conditions plays no significant explanatory role on the classificatory view. The representational features of spoken and mental acts are explained directly and without the use of propositions by appealing to what the agent does in the performance of those acts.

Still, it is possible to say something about how the types of actions that serve as propositions have satisfaction conditions. The explanation starts with the tokens. A token act of predicating F of a is true or false depending on whether a is F. Any such token will have these truth-conditions. The type of act of predicating F of a inherits these truth-conditions from its tokens. This is an instance of a broader phenomenon of types inheriting properties from their tokens. Consider the flag of the United States, i.e. the type of flag. Any token flag of this type has certain properties: it is rectangular, it has red and white stripes, it has a pattern of white stars set against a blue rectangle in the upper left corner. The type of flag also has these properties. It is completely natural and unremarkable to say that the flag of the United States is rectangular, striped, and has stars in the upper left corner. But remember that flag type is an abstract object. How could an abstract object have these properties? How can an abstract object have a shape and be striped? It has these properties in a derivative or secondary sense. The flag type is rectangular, striped, and has stars in the upper left corner in the sense that any possible token of this type is rectangular, striped, and has stars in the upper left corner. The fact about the type is constituted by facts about all of its possible tokens. This is what it means for the type to inherit properties from its tokens. Its possession of these properties is constituted by the possession of the properties by any of its possible tokens.
The same goes for types of acts of predication. Any possible token act of predicating \(F \) of \(a \) is about \(a \), and is true just in case \(a \) is \(F \). Because of this, the type of act of predicating \(F \) of \(a \) is about \(a \) and is true just in case \(a \) is \(F \). The type has these representational features insofar as any of its possible tokens has these features. Note that this holds even if there are no actual tokens of this type. It’s enough that any possible token of this type would have these properties if it existed. Furthermore, the type is an abstract object that doesn’t depend for its existence on the existence of any of its tokens. Think about the flag. Even if all tokens of the US flag were destroyed — even if no such token had ever been made — there would still be that type of flag, and it would still be rectangular, striped, and have stars in its upper left corner. Again, the type of flag has these properties in the secondary sense that if there were any tokens of it they would actually have these properties.

That is enough, I think, to explain how types of actions are capable of being representational and having satisfaction conditions. I’ve focused on a simple predicative case, but the view extends in the obvious ways to interrogative and imperative propositions, and to more complicated examples of each. It’s worth emphasizing again, however, that there is no urgent explanatory demand for an account of how these types have satisfaction conditions. The reasons for wanting them to have truth-conditions and other kinds of satisfaction conditions are fairly thin. We attribute truth and falsity to propositions when we say things like ‘It’s true that Frege was a logician’. We take propositions to bear logical relations to one another, and that requires that they have satisfaction conditions. We think that the proposition that Frege was a logician is about Frege. Respecting these features of our discourse about propositions requires that they are representational and have truth-conditions, but, unlike the Fregean approach, this requirement doesn’t go any deeper than that.

Frege’s puzzle

One of the great advantages of the identification of propositions with types of actions is the enormous flexibility offered by types. Types are abundant. Consider a token act of referring to Frege. Suppose the speaker uses the name ‘Frege’ to perform this act of reference, and does so while thinking of Frege as the author of Die Grundlagen der Arithmetik. This token act of reference falls under a virtually limitless array of types. There is the type of act of referring to Frege in some way or other, i.e. using any name or other referential device. Let’s call this an object dependent reference type, since whether a token act of reference falls under it depends only of the identity of the object referred to. Then there is the type of reference act of referring to Frege using the name ‘Frege’. Let’s call this a name-and-object dependent reference type, since its tokens all use the name ‘Frege’ to refer to Frege. And then there are even more finely grained types that build in more details about how the act of reference is performed, e.g. the type of reference act of referring to Frege using the name ‘Frege’ while thinking of him as the author of Die Grundlagen der Arithmetik, and so on and so forth.

This abundance of types is the key to the solution to Frege’s puzzle. Frege’s puzzle is based on the fact that co-referential singular terms can differ in cognitive significance. This shows itself most clearly with identity sentences. ‘Twain is Twain’ is trivial and uninformative, but ‘Twain is Clemens’ is not. A solution to the puzzle would
find contents for ‘Twain’ and ‘Clemens’ that explain this difference in cognitive significance. The contents of names, on the present approach, are types of reference acts. Solving Frege’s puzzle thus amounts to finding types of reference acts for the names ‘Twain’ and ‘Clemens’ that capture this difference in cognitive significance.

I call the types that do the job semantic reference types. These types are semantic because they are defined using the concept of semantic competence. First, let’s define a relation, R, on token acts of reference. Let x and y be token acts of reference, and nx and ny the names used in those tokens, respectively. Define R as follows:

\[xRy \iff \text{anyone who is semantically competent with } n_x \text{ and } n_y \text{ will realize, under relevantly ideal conditions, that } x \text{ and } y \text{ have the same referent.} \]

This relation R can then be used to define semantic reference types. The semantic reference type of a token act of reference x is the type of reference act of being an act of reference that bears R to x. The relation R determines an equivalence class of tokens acts of reference that all bear R to x. The semantic reference type of x is then the type that covers all of the token acts of reference in this equivalence class. The idea is that if semantic competence alone is sufficient to grant someone knowledge that two token acts of reference co-refer then those two token acts fall under the same semantic reference type.

Token acts of reference using the names ‘Twain’ and ‘Clemens’ do not fall under the same reference type. It is not hard to imagine someone who is semantically competent with both names yet who fails to realize that uses of these names co-refer. Competence with these names is not sufficient for granting knowledge of co-reference. This means that there are two distinct semantic reference types corresponding to the names ‘Twain’ and ‘Clemens’. When I introduced reference types earlier using boldface these were the types I had in mind. Twain and Clemens are the semantic reference types of token acts of reference using the names ‘Twain’ and ‘Clemens’ respectively. The propositions expressed by ‘Twain was a writer’ and ‘Clemens was a writer’ are as follows:

8. \(\vdash <\text{Twain}, \text{writer}> \)

9. \(\vdash <\text{Clemens}, \text{writer}> \)

These are different types of actions — they contain different semantic reference types as constituents. Intuitively, in tokens of (8) and (9) a speaker refers to Twain/Clemens in two semantically different ways.

This allows us to capture the difference in cognitive significance between the identity sentences in Frege’s puzzle. The propositions expressed by these identity sentences are as follows:

10. \(\vdash <(\text{Twain}, \text{Twain}), \text{identity}> \)

11. \(\vdash <(\text{Twain}, \text{Clemens}), \text{identity}> \)

In a token of (10) a speaker refers to Twain twice, with each token act of reference falling under the same semantic reference type. Consequently, any competent speaker who hears a token of (10) will know that these two token acts of reference co-refer. That captures the sense in which tokens of (10) are trivial and uninformative. By contrast, in a

\[\text{See (Hanks 2011, 2015, ch. 5) for more on this definition, and an explanation of the relevantly ideal conditions.} \]
token of (11) a speaker also refers to Twain twice, but in this case the two token acts of reference fall under different semantic reference types. This means that it is possible for a semantically competent speaker to fail to realize that these two token acts of reference co-refer. That captures the sense in which tokens of (11) are non-trivial. It is possible for someone to understand an utterance of ‘Twain is Clemens’ without immediately realizing that the speaker is referring to the same person twice over.

Semantic reference types are good candidates to be the semantic contents of proper names. Contents in general, on the present approach, are types of actions, and the contents of proper names are types of reference acts. The semantic content of a proper name then ought to be a type of reference act that is distinctively semantic in character. In other words, the type of reference act identified with the semantic content of a proper name ought to be one that is defined using semantic concepts. Semantic reference types are defined using the concept of semantic competence, which is a recognizably semantic concept. The contrast here is with object dependent reference types, which are defined in terms of objects, and name-and-object dependent reference types, which are defined in terms of names and objects. Neither of these kinds of reference types has anything distinctively semantic about it.

Here’s another way to think about it. Consider some token act of reference using the name ‘Jones’. This token act of reference falls under a limitless array of types. Which type in this array deserves to be singled out as the semantic content of this token act of reference? Using Jones herself (or the name ‘Jones’) does not seem to give us a type that deserves the label ‘semantic’. Of course, the object can be used to identify a reference type (the object dependent reference type), but why think that this reference type is semantic? Objects are on the side of the world, not on the side of meaning or representation. This point would be easier to make if we were not all accustomed to thinking of objects as the semantic contents of names. If we could regain some of our pre-direct reference innocence then I think the idea that an object alone can be used to individuate the semantic content of a name would strike us as strange and implausible. In the present context, in which the contents of names are identified with types of reference acts, the idea looks like a non-starter. The definition of semantic reference types, by contrast, identifies a reference type using the concept of semantic competence. Since this concept is semantic, the corresponding type is as well. This is the sense in which semantic reference types are good candidates to be the semantic contents of proper names.

Conclusion

This solution to Frege’s puzzle is one of a number of applications of the identification of propositions with types of actions. This view can also be used to give an account of empty names (Hanks 2015, ch. 6), a semantics for propositional attitude reports (Hanks 2011, 2015 ch.7), and a solution to the problem of de se belief (Hanks 2013, 2015 ch.8). In each case, the resources for these solutions come from the enormous flexibility offered by the identification of contents with types of actions. The view can also be used to provide an improved taxonomy for speech acts (Hanks 2015 ch.9, forthcoming), a new perspective on the Kripke-Wittgenstein rule-following problem (Hanks 2017b), and, potentially, a solution to the Frege-Geach problem for expressivism.
in meta-ethics (Hom and Schwartz 2013). As work on the view progresses this list will no doubt continue to grow.

References

Frege, Gottlob 1918a: “Thought”. In Beaney 1997, pp.325-46.

----- 2017b: “Predication and Rule Following”. In Stalmaszczyk 2017, pp.199-223.
----- forthcoming: “Types of Speech Acts”. In Fogal, Harris, and Moss, forthcoming.

